If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-38x=5979
We move all terms to the left:
2x^2-38x-(5979)=0
a = 2; b = -38; c = -5979;
Δ = b2-4ac
Δ = -382-4·2·(-5979)
Δ = 49276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{49276}=\sqrt{4*12319}=\sqrt{4}*\sqrt{12319}=2\sqrt{12319}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-2\sqrt{12319}}{2*2}=\frac{38-2\sqrt{12319}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+2\sqrt{12319}}{2*2}=\frac{38+2\sqrt{12319}}{4} $
| |9x+10|=|x-17| | | 6a+4/9+4=23a+18/36 | | 3/5x30x-15=72 | | 5(9p-5)=7(6p+2) | | 82-6m=4 | | 24+12(x-5)=6x+6(x+4) | | 8(2x+2)=80 | | 5(x-3)+3=9x-(4x+7)-5 | | 2q-3=-4q-2 | | 3k+5=-13 | | .065x=180 | | 6(x+3)=7(x-1) | | 8(5x-8)+1=40x | | Xx14=111234 | | 8(x+3)+1=-2(x+4)+4 | | 3a-18+6=9a-1 | | 7(x+2)=8(x-2) | | 7(x-2)=8(x+4) | | x+10=50-x | | x^2+162x+585=0 | | 5a-(-2a+3)=-2a-(-a+3) | | 10*9-x+x=10x+9-x+27 | | 2/x+6=14 | | 5a-(2a+3)=-2a-(-a+3) | | 154=2{(2+2b)+b | | 3x+6-10=4 | | 3/2x+1/3=x-1/3 | | X²+y²-4y=5 | | (3x×25)=27x5 | | (3x×25)=27×5 | | 2y=-0.06 | | 7x-4=3x+19 |